7T multi-shell hybrid diffusion imaging (HYDI) for mapping brain connectivity in mice

نویسندگان

  • Madelaine Daianu
  • Neda Jahanshad
  • Julio Villalon
  • Gautam Prasad
  • Russell E. Jacobs
  • Samuel Barnes
  • Berislav Zlokovic
  • Axel Montagne
  • Paul M. Thompson
چکیده

Diffusion weighted imaging (DWI) is widely used to study microstructural characteristics of the brain. High angular resolution diffusion imaging (HARDI) samples diffusivity at a large number of spherical angles, to better resolve neural fibers that mix or cross. Here, we implemented a framework for advanced mathematical analysis of mouse 5-shell HARDI (b=1000, 3000, 4000, 8000, 12000 s/mm2), also known as hybrid diffusion imaging (HYDI). Using q-ball imaging (QBI) at ultra-high field strength (7 Tesla), we computed diffusion and fiber orientation distribution functions (dODF, fODF) to better detect crossing fibers. We also computed a quantitative anisotropy (QA) index, and deterministic tractography, from the peak orientation of the fODFs. We found that the signal to noise ratio (SNR) of the QA was significantly higher in single and multi-shell reconstructed data at the lower b-values (b=1000, 3000, 4000 s/mm2) than at higher b-values (b=8000, 12000 s/mm2); the b=1000 s/mm2 shell increased the SNR of the QA in all multi-shell reconstructions, but when used alone or in <5-shell reconstruction, it led to higher angular error for the major fibers, compared to 5-shell HYDI. Multi-shell data reconstructed major fibers with less error than single-shell data, and was most successful at reducing the angular error when the lowest shell was excluded (b=1000 s/mm2). Overall, high-resolution connectivity mapping with 7T HYDI offers great potential for understanding unresolved changes in mouse models of brain disease.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reconstruction of major fibers using 7T multi-shell Hybrid Diffusion Imaging in mice

Diffusion weighted imaging (DWI) can reveal the orientation of the underlying fiber populations in the brain. High angular resolution diffusion imaging (HARDI) is increasingly used to better resolve the orientation and mixing of fibers. Here, we assessed the added value of multi-shell q-space sampling on the reconstruction of major fibers using mathematical frameworks from q-ball imaging (QBI) ...

متن کامل

Multi-Shell Hybrid Diffusion Imaging (HYDI) at 7 Tesla in TgF344-AD Transgenic Alzheimer Rats.

Diffusion weighted imaging (DWI) is widely used to study microstructural characteristics of the brain. Diffusion tensor imaging (DTI) and high-angular resolution imaging (HARDI) are frequently used in radiology and neuroscience research but can be limited in describing the signal behavior in composite nerve fiber structures. Here, we developed and assessed the benefit of a comprehensive diffusi...

متن کامل

Hybrid diffusion imaging.

Diffusion measurements in the human central nervous system are complex to characterize and a broad spectrum of methods have been proposed. In this study, a comprehensive diffusion encoding and analysis approach, hybrid diffusion imaging (HYDI), is described. The HYDI encoding scheme is composed of multiple concentric "shells" of constant diffusion weighting, which may be used to characterize th...

متن کامل

Quantitative Comparison between Hybrid Diffusion Imaging and Diffusion Spectrum Imaging

Y-C. Wu, A. L. Alexander Medical Physics, University of Wisconsin-Madison, Madison, WI, United States, Psychiatry, University of Wisconsin-Madison, Madison, WI, United States Background At higher levels of diffusion-weighting, the diffusion tensor model is inadequate for describing non-Gaussian diffusion that arises from complex tissue architecture (e.g., crossing white matter (WM) fiber groups...

متن کامل

Diffeomorphic metric mapping and probabilistic atlas generation of hybrid diffusion imaging based on BFOR signal basis

We first propose a large deformation diffeomorphic metric mapping algorithm to align multiple b-value diffusion weighted imaging (mDWI) data, specifically acquired via hybrid diffusion imaging (HYDI). We denote this algorithm as LDDMM-HYDI. We then propose a Bayesian probabilistic model for estimating the white matter atlas from HYDIs. We adopt the work given in Hosseinbor et al. (2013) and rep...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of SPIE--the International Society for Optical Engineering

دوره 9413  شماره 

صفحات  -

تاریخ انتشار 2015